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HYPERSONIC FLUTTER ANALYSIS USING

MEASURED STATIC AERODYNAMIC DERIVATIVES,

AND COMPARISON WITH EXPERIMENT

By Robert C. Goetz

Langley Research Center

SUMMARY

A two-part investigation was conducted, the final intent being to evaluate a quasi-

steady flutter analysis technique, using measured static aerodynamic derivatives, at
hypersonic speeds. In the first part, static force and moment data were obtained for a

series of square-planform double-wedge airfoils with both sharp and circularly blunted

leading edges. Aerodynamic characteristics were obtained in helium flow over an angle-
of-attack range of -2 to 8 at Mach numbers of 6.8 and 15.3. The results indicate that

increasing the leading-edge bluntness greatly increases the drag and decreases the lift

at a given angle of attack at both Mach numbers. These trends are shown to be in agree-
ment with modified Newtonian theory. However, at a given angle of attack, the increase

in lift coefficient between Mach numbers of 6.8 and 15.3 was not adequately predicted by
the theory. At a Mach number of 6.8 the aerodynamic center was found to shift forward

with increase in bluntness, while at a Mach number of 15.3 there was a slight rearward

shift. Newtonian theory predicts a forward shift with increase in bluntness, and in all

cases placed the aerodynamic center forward of the experimentally determined locations.

In the second part of the investigation, a two-degree-of-freedom quasi-steady flutter

analysis, including rate terms, is formulated for these airfoils in terms of the experi-

mentally determined slope of the lift curve and location of the aerodynamic center. The

resulting analytical solutions are evaluated by comparison with existing experimental

flutter results. These comparisons indicate that the pitch-rate term (moment due to

damping in pitch) has a significant effect upon the flutter solution and should be included

in the quasi-steady analysis. And, finally, the comparisons show that the quasi-steady

technique, utilizing measured static aerodynamic quantities, is capable of about

95-percent accuracy in predicting flutter at hypersonic speeds.

INTRODUCTION

The aerodynamic theories ordinarily used in hypersonic flutter analyses are piston

theory and Newtonian theory; they are easily applied and afford reasonable accuracy for



simple configurations. Both theories are applied to unsteady problems in a quasi-steady \
approach formulated on the assumption that the aerodynamic forces on an oscillating

airfoil may be defined, at any instant of time, as the steady-state aerodynamic forces

associated with the instantaneous angle of attack. This approach, which neglects only

the influence of the wake vortices on the flow, is appropriate for hypersonic flutter

because of the extremely low reduced frequency (due to high flow velocities) of the

unsteady motion. However, each theory includes other assumptions that limit its range

of applicability.

Piston theory is developed for cases where the product of Mach number and sur-

face inclination is less than 1, and Newtonian theory is applicable for high Mach numbers

and large surface inclinations. In addition, these theories neglect viscous effects, which

can be significant at hypersonic speeds, and configuration flow-field effects, which can

also be significant if the component under study is in a complex local flow field caused

by adjacent components. Thus, the flutter analysis of realistic cases by means of these

aerodynamic theories would yield questionable results.

A less formal, and more empirical, analysis of realistic flutter cases is the quasi-

steady approach using measured static aerodynamic derivatives. These measured quan-

titles reflect the actual pressure distribution of the component under study, thereby

including viscous and configuration flow-field effects. Additionally, the range of appli-

cability would include complex configurations and configurations at angles of attack.

The flutter mechanism has been described in terms of simply defined static aero-

dynamic forces by various investigators in the past, such as Pines (ref. 1) and Bryce et

al. (ref. 2). More recently this approach has been utilized to predict flutter on wings at

angle of attack in the transonic and supersonic speed ranges (ref. 3).

The present study was undertaken to evaluate the use of measured static aerody-

namic derivatives in a quasi-steady flutter analysis at hypersonic speeds. Selected for

study were relatively simple rigid models similar to those previously investigated for

flutter, experimentally and analytically, at Mach numbers of 6.8 and 15.4 (refs. 4 and 5).

These models were square-planform double-wedge airfoils with circular leading and

trailing edges,

The investigation was in two parts. In the first part, static aerodynamic data were

obtained for the models in helium flow in the Langley Mach 7 and Mach 15 hypersonic

aeroelasticity tunnels over an angle-of-attack range from -2 to 8. The resulting aero-

dynamic characteristics are compared with those predicted by Newtonian and modified

Newtonian theories. In the second part of this report, a two-degree-of-freedom quasi-

steady flutter analysis, including rate terms, is formulated for the airfoil configurations

in terms of the experimentally determined static aerodynamic characteristics. An

explicit solution to the flutter problem is presented, utilizing pitch-rate derivatives which
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are assumed to be known, and the flutter characteristics for the model configurations
are calculated. These quasi-steady analytical results are compared with existing experi-

mental and analytical flutter results for identical models (refs. 4 and 5). In addition, the
present paper contains an evaluation of the effect of pitch rate on flutter, and also quasi-

steady flutter results for the same configurations at angles of attack up to 8.

SYMBOLS

b wing semichord

CT) wing drag coefficient

CL wing lift coefficient

CL wing lift-curve slope

Cm wing pitching-moment coefficient

Cp pressure coefficient

C^p local coefficient of lifting pressure difference (see eq. (5))

C^p local lift-curve slope (see eq. (6))

c wing chord

Ci section lift coefficient

c^ section lift-curve slope, Qc^ /Qa (see eq. (7))

hp^ vertical displacement of the pitch axis

k reduced frequency, bcDr/V

L lift

L^ dimensionless coefficients defining lift on an oscillating wing section

(i 1, 2, 3, 4) (see eqs. (11))

3
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M Mach number

Mi dimensionless coefficients defining moment on an oscillating wing section

(i 1, 2, 3, 4) (see eqs. (11))

MQ, aerodynamic moment on wing section about the pitch axis

p local pressure on lower surface

p local pressure on upper surface

q dynamic pressure, pV-/2

r radius of leading edge

i- nondimensional leading-edge radius, r/c

r,,, normalized radius of gyration of wing about pitch axis

s wing semispan

t time

V flow velocity

V flutter speed normalized by the flutter speed at a mean angle of attack of 0

w downwash

w component of downwash due to time variation of displacements (eq. (4))

x chordwise coordinate measured from leading edge (fig. 16)

x distance from pitch axis to experimental aerodynamic center, positive aft

Xor. distance from wing leading edge to aerodynamic center
ci\j

x^r. distance from wing leading edge to pitch axis
pa

4



x ^^pa c

XQ, dimensionless static unbalance

y spanwise coordinate measured from root chord (fig. 16)

z coordinate normal to x and y (fig. 16)

cc local angle of pitch of airfoil (geometric angle of attack since wing is rigid
in camber) (see fig. 16)

a^ perturbation pitch angle

cx^ mean angle of attack

y ratio of specific heats, 5/3 for helium

6 wedge half-angle

IJ. mass ratio (ratio of mass of wing to mass of test medium contained in

volume generated by revolving each streamwise chord about its midpoint)

P density of test medium

~T maximum ratio of airfoil thickness to chord

~r. ratio of thickness to chord at wing trailing edge

o)r flutter frequency

C^L frequency of uncoupled plunging mode

ci^ natural frequency of ith mode (i 1, 2, 3, .)

Ct’0, frequency of uncoupled pitching mode

Subscripts:

exp experimental
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stag stagnation

th theoretical

Dots over symbols denote differentiation with respect to time.

STATIC AERODYNAMIC CHARACTERISTICS

Apparatus and Models

The tests were conducted in the Langley hypersonic aeroelasticity tunnels (HAT).
This facility uses helium as a test medium and is of the blowdown type. At the time of

the investigation it had two contoured nozzles designed to generate uniform flows at

Mach numbers of 6.8 and 15.3. A description of the M 6.8 leg is given in reference 6,

and a description of the M 15.3 leg is presented in reference 5.

Two series of airfoil models were tested, each having semispan aspect ratios of 1.0,
zero sweep, and no taper. The basic model had a double-wedge profile with a wedge half-

angle of 5 and the maximum thickness at the midchord, and was geometrically identical

to the flutter models of references 4 and 5. Each series consisted of three basic models

with leading-edge radii of 0, 3, and 6 percent of their chord. The difference between the

two series was that the one tested at M 15.3 had a 6-inch (15.24-cm) chord, whereas

the one tested at M 6.8 had a 4-inch (10.16-cm) chord. The latter series of models

is shown in figure 1.

All the models were accurately machined from solid steel and were highly polished.

The surfaces and edges were maintained in good condition during the tests by periodic

polishing. For aerodynamic-data acquisition they were mounted on strain-gage balances,

as shown in figure 2, which were integral with supporting shafts that were in turn clamped

to the side wall of the wind tunnel.

The models were separated from the tunnel-wall boundary layer during the tests by

reflection-plane systems identical to those used in references 4 and 5. The arrangement

of one of the models and the reflection-plane system in the Mach 15.3 leg of the HAT
facility is shown in figures 3 (a) and 3(b).

Test Procedure

For each test run the models were positioned on the reflection plane at the desired

angle of attack with respect to the free-stream flow, the angle of attack ranging from -2
to 8. This preset angle of attack was monitored during the test run by means of high-

speed motion pictures. For the tests at M 15.3 the models were protected from the
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starting and stopping transients of the tunnel flow by a cover wedge, shown extended in

figure 3(c), which was retracted to a position between the reflection plane and the tunnel
side wall, as illustrated in figure 3(b), during the data-acquisition portion of the run.
For the tests at M 6.8 the models and their support structures were initially posi-
tioned in an enclosure immediately adjacent to, but outside of, the test section and were
injected into the test section subsequent to passage of the flow starting transient, and
then retracted prior to the flow stopping transient. These procedures were necessary
in order to protect the sensitive strain-gage balance from the high loads associated with

the starting and stopping transients.

The operating procedure was similar for both series of models. After a model
was installed, the tunnel was evacuated to a low pressure. A control valve upstream of
the test section was opened and flow was established at a constant Mach number and a
low dynamic pressure. At this time the model was exposed to the flow by one of the two
methods previously described, and the dynamic pressure was increased slowly to the

desired value. Then the model was again protected and the flow stopped. Throughout
the tunnel operation, stagnation temperatures and pressures were recorded on an oscil-

lograph together with signals from the six components of the strain-gage balance, so that
tunnel conditions could be correlated with the model force and moment data.

Results and Discussion

Complete force and moment data were obtained for the various airfoil configura-
tions at the same test conditions as were used in the flutter tests of references 4 and 5,
namely, nominal Mach numbers of 6.8 and 15.3 and Reynolds numbers based on the wing
chord of 4.8 X 106 and 2.4 X 106, respectively. The coefficients of lift, drag, and pitching
moment about two axes are presented as a function of angle of attack at each test Mach
number in figures 4 to 9 and the trends are illustrated by faired lines through the experi-
mental data. The aerodynamic coefficients were reduced from the measured data, after
the measured data had been corrected in the usual manner for balance component-
interaction effects. In the data reduction, the planform area and wing-chord length were
used for reference.

Shown collected in figures 10(a) and 10(b) are the faired experimental lift-coefficient
data for each of the three airfoil configurations at each Mach number, presented as a
function of angle of attack. Increasing the leading-edge bluntness is shown to decrease
the airfoil lift coefficient for a given angle of attack at both Mach numbers. However,
for a given amount of leading-edge bluntness the lift coefficient is higher at M 15.3
(fig. 10(b)) than at M 6.8 (fig. 10(a)) over the entire angle-of-attack range of the tests.
Included in figure 10 are theoretical lift-coefficient values obtained from modified
Newtonian theory (c? Cp^stag sin2^, where cj) is the angle between the flow and a

7



1

tangent to the exposed surface). While the trends of decreasing lift coefficient with

increasing bluntness are predicted at both Mach numbers, the theory predicts only

slightly higher absolute values at the higher Mach number for a given configuration.

Consequently, modified Newtonian theory compares well with the measured results at

M 6.8, but is quite low at M 15.3. Additionally, even unmodified Newtonian theory

predictions (not shown) are lower than the experimental values at M 15.3. However,
it should be noted that the theory does not account for the viscous effects which would be

reflected in the test results. At hypersonic speeds the boundary layers at a given

Reynolds number are thicker than those at lower speeds. This thickening of the bound-

ary layer in effect increases the wedge angle, thus resulting in higher surface pressures

than predicted by inviscid-flow theories.

The drag coefficient at a mean angle of attack of 0 is presented in figure 11 as a

function of leading-edge radius. A great increase in drag with increased bluntness is

illustrated; the drag loading is increased by about a factor of 20 when a sharp leading

edge is replaced by one with a radius equal to 6 percent of the airfoil chord. Newtonian

theory is shown to be inaccurate for the sharp configuration, and although much better

for the blunt models, it is about 10 percent lower than the test results for M 15.3 and

about 20 percent higher than the test results for M 6.8.

From the wind-tunnel static measurements presented in figures 4 to 9, faired values

of the slope of the lift curve CLn, and location of the aerodynamic center x^c can be

obtained. Values of these two quantities for the series of airfoils of this investigation

are presented as a function of angle of attack in figures 12 and 13. These quantities

reflect the effects of the blunt leading edge and the boundary layer on the pressure dis-

tribution. The results indicate that at both Mach numbers the slope of the lift curve

decreases with increase in leading-edge bluntness. At M 6.8 the aerodynamic cen-

ter shifts forward with increasing bluntness, while at M 15.3 it shifts slightly rear-

ward with increasing bluntness. There is also the expected rearward shift of the aero-

dynamic center with increase in angle of attack for all configurations at both Mach

numbers.

In figure 14 the lift-curve slope at a^ 2 is presented as a function of leading-

edge radius. Included for comparison are the theoretical values predicted by Newtonian

and modified Newtonian theory. The experimental aerodynamic centers for a^ 2, as

well as Newtonian predictions, for the series of airfoils at both Mach numbers are pre-

sented in figure 15. Newtonian theory predicts a forward shift of the aerodynamic cen-

ter with increase in bluntness, which is in agreement with the M 6.8 test results.

However, in all cases Newtonian theory placed the aerodynamic center forward of the

experimentally determined locations. This is probably because the theoretical treatment

8
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assumes that no lift is generated aft of the midchord of the double-wedge configuration,
that is, in the region in the aerodynamic "shadow."

HYPERSONIC QUASI-STEADY FLUTTER ANALYSIS

AND COMPARISON WITH EXPERIMENT

Analysis

A rigid airfoil section of unit width, of the configuration shown in figure 16 (with a
right-hand coordinate system x,y,z), is considered to be oscillating about the pitch axis
and plunging. The section has an angular displacement a and a vertical displacement
at the pitch axis hpa. The angular displacement is represented as

a cf(t) o’m + cri(t) (1)

where crm is a mean angle about which a perturbation cq(t) can take place. Let the
shape of the airfoil section be represented by Zg Zg(x) where Zg is positive out-
ward from the midplane for both surfaces. Thus the z-coordinate of the airfoil surface
for time-varying displacements is, for small a,

z z(x,t) -hpa(t) +/- Zg(x) (x Xpa)cr(t) (2)
where the upper and lower of the signs with Zg(x) apply to the upper and lower surfaces,
respectively, of the airfoil.

The total downwash ratio (positive down) at the airfoil surface is

^ ^ + v^ [T^ + "m] . ^pa . (x x,,)., . V^ (3)

The part of the downwash ratio that is due to the time variation of hpa and a is the
last three terms, or

Wi h,-a x Xnai- ^a- +^a ai + ai (4)

The coefficient of lifting pressure difference at a point x on the chord is denoted by

P^) P^)
CAP C^p(x) -1--,--- (5)

For use in a linear-type analysis the local lift-curve slope is

^ C^p(x) C^(x) (6)

9
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where the angle a itself is a function of x and for the present analysis, as in refer-

ence 7, is taken to be equal to Wi/V of equation (4) for the small deflections being con-

sidered. Inherent in this equivalence is the usual assumption made for high speeds and

slow oscillations (low reduced frequency k) that a point-function relationship exists

between the local pressure difference on the surface of a wing and the normal component

of fluid velocity produced by the wing’s motion. Also, as in reference 7, the section

value c; is defined as
"a

c^ H’CAp^dx (7)

The quasi-steady lift (positive down, as in much of the flutter literature) can then be

expressed as

pc w,(x) yc h a,
-L ^ C^q -y- dx ^ C^q "i + -f- + (x Xp^-y dx (8)

As in reference 7, the distance from the pitch axis to the section aerodynamic center,
whether obtained experimentally or analytically, is defined as

^ ^P^ ^a)^

^ ^Pa dx

By use of equations (7) and (9) in equation (8), the quasi-steady section lift can be

expressed as

-L ^ccJ^^^) (lOa)

A parallel development gives the quasi-steady section pitching moment as

-Mo, qc c^x(a, -,- ^ 4- ^c C^(x xp^dx (lOb)

For simple harmonic motion the section lift and moment can be expressed in terms of the

complex coefficient form of Garrick and Rubinow (ref. 8) as

-L 4pbV2k2 (LI + iLa)11^ ^- (L3 + il^
) (11)

-MQ, 4pb2V2k2 (MI + iMa)-^ + (MS + iM4)ffJ
Before relating the coefficients of equations (lOa) and (lOb) to those of equations (11),

the application of the experimentally measured static aerodynamic derivative CL^ is
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described as follows. In the experimental program described in the section entitled

"Static Aerodynamic Characteristics" the aerodynamic derivatives were measured for
the whole model rather than for any section. However, the model was unswept and its

geometry was uniform in the spanwise direction. Therefore, the section properties c?

and x are considered to have the same numerical values as CL,., and x for the
whole wing. With this consideration, the relationships between the coefficients are

LI 0 MI 0

T ^a CLa! xL2 ^ ^ -^Tb

^ -3^f
L4 c^ ^ r-^^-

^
It can be seen from equations (11) and (12) that all the oscillatory forces necessary

for a flutter analysis can be expressed in terms of experimentally determined values of
the lift-curve slope and the location of the aerodynamic center relative to the axis of

rotation, except M4, the moment due to damping in pitch. For the purposes of this inves-

tigation M4 is represented by expressions derived from piston theory and Newtonian

theory at M 6.8 and 15.3, respectively.

The piston-theory expression for M4 taken directly from reference 9, for the
second-order expansion of the downwash, is

1 4 v + i L ^A ,
M4 Mk 3 + ^-Vte 2 -J-Y 2xpa(M2 + ^ + Sx?^) (13)

where for a double-wedge airfoil the thickness of the trailing edge T, is equal to zero,
and the first moment of the area of the cross section about the airfoil leading edge in non-
dimensional form M^y-/c3 is equal to "F/4. Therefore, equation (13) for a double-wedge
airfoil reduces to

M4 Mk t + ZTJ"(- t) ^(^ + L4 + 2xpaL2) (14)

It is noted that while equation (14) is derived from piston theory, this expression for M4
is dependent on oscillatory coefficients (l^ and M^) which can be expressed in quasi-

steady form according to equations (12).

11
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The corresponding expression for a double-wedge airfoil derived from Newtonian

theory is obtained from reference 10 as

f
^p ^WH)^

1 2r 1
r -Q n"F 9r r" /1 -9\ -9 /1 \

\ /1 ^rf^ ^ ^^ ) ^^^) (15)
1 + 1^ 2r) J

This Newtonian theory expression for M4, while not in terms of measured static aero-

dynamic derivatives, does account analytically for the blunt leading edge which piston

theory neglects.

The equations of motion of the airfoil in terms of the two uncoupled degrees of

freedom (vertical translation and pitch) lead to the flutter determinant as expressed in

reference 8, which is

f /^2 ^ f ~\
Y (ir) 1 + LI + IL^II <-2/^ + L3 + iL4\l3

0 (16)

^xa + MI + iM2^l3 < ur^2 f^\2 i + M3 + iM^
where

^wo
^loW)

^C^ew)
and these I^’s allow for spanwise variations of the mode shapes. Expanding equa-

tion (16) yields two equations (real and imaginary) which can be solved explicitly for the

unknown flutter speed and frequency.
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Flutter Experiment

The results of wind-tunnel flutter tests of the model configurations analyzed in the

present study are documented in references 4 and 5. The models were tested at a mean

angle of attack of 0 and M 6.8 and 15.3 in the Langley hypersonic aeroelasticity tun-

nels. In these tests the rigid planform was mounted on a flexible shaft; the pitch axis

was located at 35 percent of the chord, and the center of gravity was at about 53-percent
chord and 50-percent span. The series of flutter models had their leading and trailing
edges circularly blunted with radii of 0, 3, and 6 percent of their chord (the same as the

aerodynamic-characteristics models) and, additionally, included a model with 1-percent
bluntness. Figure 16 illustrates and defines the basic geometric parameters, and details

of individual model characteristics are tabulated in references 4 and 5.

Results and Discussion

Equations (12) show that the oscillatory aerodynamic coefficients (except M4) can

be defined in terms of the experimentally determined lift-curve slope and aerodynamic-
center location. Utilizing the values given in figures 12 and 13 for these quantities, and

the measured mode shapes of references 4 and 5, the flutter condition was determined by

solving the resulting equations of the expanded flutter determinant (eq. (16)). Prelimi-

nary to achieving an explicit solution, values of M4 were determined from expressions

derived from second-order piston and Newtonian theories (eqs. (14) and (15)) for the

M 6.8 and 15.3 cases, respectively. Resulting values of the oscillatory coefficients

determined by using the measured static aerodynamic derivatives, and the moments due
to damping in pitch (M4) as determined from equations (14) and (15), are given in table I
for the models under consideration. Also included in table I are the resulting calculated

values of the flutter velocity and frequency.

These analytical quasi-steady flutter results are presented in figures 17 (a) and

17(b) in the form of the flutter velocity-index parameter V/bc^2\/jiT as a function of

leading-edge radius at M 6.8 and 15.3. Also included for comparison are the experi-

mental flutter results of references 4 and 5.

In figure 17 (a) the analytical flutter stability boundary, depicted by the dashed curve,
predicts the experimental trend of a higher flutter stability boundary with increased blunt-

ness. Examination of the calculated flutter velocity-index values for the configurations
tested at M 6.8 having blunt leading edges shows that they compare well with the mea-

sured values. However, a variance between the quasi-steady analytical and experimental
flutter velocity-index results of about 20 percent is shown to occur for the sharp

configuration.

The flutter velocity results for M 15.3 are given in figure 17(b). Again the

quasi-steady analytical results are depicted by the dashed curve and they indicate a

13
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higher flutter stability boundary with increase in leading-edge bluntness. A comparison

between the calculated and measured flutter velocity-index values shows good agreement

for the sharp and 3-percent blunt configurations, but a difference of about 15 percent for

the 1-percent blunt configuration.

The results for the 6-percent blunt configuration warrant further discussion. In

figure 17 no experimental flutter-velocity data are shown for the 6-percent blunt configu-

ration because the model encountered a static divergence instability at a lower velocity

than its flutter boundary. Conventional divergence analysis, wherein the aerodynamic

pitching moments reach a value exceeding the torsional rigidity of the airfoil and cause

it to diverge statically in the pitch mode, failed to predict this result. However, a newly

recognized form of divergence in which drag loading is a significant factor and which is

characterized by a mode of deflection consisting of lateral bending (vertical and span-

wise displacements) accompanied by pitching is discussed in reference 11 for models

supported on long, thin, rectangular shafts. Results of this form of divergence analysis

for the 3- and 6-percent blunt configurations are shown by the solid curves in figures 17 (a)
and 17(b). The details of these calculations are given in reference 11; it is sufficient to

mention here that they were made by using measured static aerodynamic quantities, and

the resulting divergence instability was dependent upon a combination of the high drag

loading and the particular model support arrangement. The agreement between the

experimental and calculated divergence results for the 6-percent blunt model is seen to

be excellent. Also, the divergence instability is predicted to occur at a higher velocity

than the flutter instability for the 3-percent blunt model, a result consistent with the

experiment. It should be noted that, like conventional flutter analyses, the quasi-steady

flutter analysis as presented herein does not include drag loading or its associated in-

plane degree of freedom.

For completeness, figure 18 presents ratios of the experimental to quasi-steady

values of the flutter frequency as a function of leading-edge radius. The agreement

between the calculated and experimental results is rather poor. This poor agreement is,

however, of about the same quality as that obtained from the piston and Newtonian theory

calculations of references 4 and 5, and in general is consistent with the findings of other

quasi-steady investigations; for example, references 3 and 12.

As was mentioned previously, M4, the coefficient for damping in pitch, was the

only oscillatory aerodynamic coefficient that could not explicitly be expressed in terms

of the measured static aerodynamic parameters. Therefore, M4 was determined from

expressions derived from piston and Newtonian theories for the calculations at Mach num-

bers of 6.8 and 15.3, respectively. Consequently, a parametric study was made to deter-

mine the effect of M4 on the final quasi-steady flutter solution. Results of this study

14



are presented in figure 19, where the ratio of experimental to theoretical flutter veloci-

ties at M 15.3 is shown as a function of the product kM4. In contrast to the findings

of other investigators, notably those of references 7 and 12, the effect of M4 (at least

for these particular configurations at M 15.3) is shown to be appreciable. Increasing

the value of kM4, for example, from 0 to 0.10 increased the quasi-steady flutter velocity

by about 20 percent for the sharp airfoil (fig. 19(a)), and about 22 percent for the 3-percent

blunt configuration (fig. 19 (b)). The values of kM4 predicted by using Newtonian theory

are indicated in the figure and they yield quasi-steady flutter-velocity values 7-percent
lower and 3-percent higher than the experimental results for the sharp and 3-percent

blunt configurations, respectively.

While the simple configurations of this study are well suited for an exploratory

inquiry concerning the empirical quasi-steady flutter technique at high speeds, it is

recognized that existing flutter theories can predict their behavior with reasonable accu-

racy. More specifically, the present flutter velocity and frequency results determined by

using the empirical quasi-steady technique reported herein are no better than the piston

or Newtonian theory results of references 4 and 5, and for some configurations not quite

as good. As an illustration, the flutter velocity and frequency results of reference 5 are

compared with the present empirical quasi-steady results for M 15.3 in figure 20. It

can be seen that for the slender, sharp, double-wedge configuration the easily applied pis-

ton theory offers the best results. But it is emphasized that the potential value of the

empirical approach is in the prediction of pitching-plunging flutter conditions for more

complicated configurations for which piston and Newtonian theories are not intended to

apply. Such configurations include those that have a highly complex flow field over the

airfoil, those for which viscous effects should be taken into account, and complex configu-

rations at angle of attack.

A quasi-steady parametric study was conducted for the series of models of this

investigation at M 15.3, with initial angle of attack as the isolated parameter. The

measured values of the slope of the lift curve and location of the aerodynamic center
obtained from figures 12 and 13 were used in equations (12) to find the aerodynamic coef-

ficients. The expression for M4 was obtained from reference 9, based on the third-

order expansion of the downwash to account for contributions due to mean angle of attack.

The calculated results are presented in figure 21 in the form of the quasi-steady flutter

velocity at angle of attack normalized by the comparable value at zero angle of attack.

The results for the sharp and the 3-percent blunt configurations indicate that increasing

the angle of attack is destabilizing for the sharp configuration and, to a lesser degree, for

the 3-percent blunt configuration. For the 6-percent blunt configuration there seems to

be no decrease in stability (in fact, a slight increase for small values of o’ni) until the

angle of attack reaches 7. These results cannot be verified at present because of the
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lack of any experimental data for these configurations at angle of attack; however, they

are presented to illustrate one possible application of the empirical quasi-steady flutter

analysis.

CONCLUSIONS

A quasi-steady flutter analysis, using measured static aerodynamic derivatives for

a series of square-planform, 5 half-angle, double-wedge airfoils with both sharp and

blunt leading edges, has been made for Mach numbers M of 6.8 and 15.3. Results from

experimental programs for measuring the static aerodynamic characteristics and for

determining the flutter characteristics, including theoretical-experimental comparisons,

lead to the following conclusions:

1. Measured trends of decreasing lift coefficient with increasing bluntness at a

given angle of attack Cfni (for 0 ^ ccm s 8) are consistent with predictions of modified

Newtonian theory. However, the increases in lift with increase in Mach number from 6.8

to 15.3 are not adequately predicted.

2. The drag coefficient for zero lift is seen to increase linearly by a factor of about

20 when the sharp leading edge is replaced by one with a radius equal to 6 percent of the

airfoil chord. Newtonian theory drag predictions are inaccurate for the sharp model, but

for the blunt configurations they are within 10 percent at M 15.3 and 20 percent at

M 6.8.

3. At M 6.8 the aerodynamic center shifts forward with increase in bluntness,

while at M 15.3 there is a slight rearward shift. At both Mach numbers the aero-

dynamic center shifts rearward for all configurations with increase in angle of attack.

Newtonian theory predicts, in contrast, a forward shift of the aerodynamic center with

increase in bluntness, and in all cases located the aerodynamic center forward of the mea-

sured position.

4. Comparing the empirical quasi-steady flutter results with previously reported

experimental results indicated agreement within about 5 percent, in predicting flutter

speeds, except for the sharp configuration at M 6.8, where the theory was about 20 per-

cent high.

5. At M 15.3, variation of the coefficient of damping in pitch had an appreciable

effect upon the quasi-steady flutter results. For example, neglecting this term would

cause the flutter velocity to change by about 15 percent for the sharp configuration.

6. Quasi-steady flutter results for the sharp and 3-percent blunt configurations

indicate that increasing the mean angle of attack from 0 is mildly destabilizing, but to a

16



lesser degree for the blunt airfoil. Results for the 6-percent blunt airfoil indicate no
similar decrease in stability until the angle of attack reaches 7.

7. The quasi-steady flutter analysis including pitch-rate terms and utilizing mea-
sured static aerodynamic derivatives is capable of considerable accuracy. This tech-
nique has potential value for complex configurations including those where viscous and
local flow-field effects need to be taken into account.

Langley Research Center,
National Aeronautics and Space Administration,

Langley Station, Hampton, Va., March 20, 1969,
126-14-02-08-23.
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TABLE I.- QUASI-STEADY ANALYTICAL FLUTTER RESULTS

[y 5/3; xpa 0.35; a^ 0]
9 9 V^f? V V

Mode^ kLg k-L3 kL4 kMg k"M:3 kM4 1/k 1 --------- ,--7=

rad/sec ft/sec m/sec ^"
M 6.8

0-9-33-2 ^ p85 0.00467 6615 2016 1.684

0-9-47-2 ^0.1413 0.1413 -0.00989 -0.00989 -0.00989 0.02068 <1 109 .00261 6966 2123 1.694

0-9-65-5 J I 66 .00160 6886 2099 1.696

3-14-33-1 ^1 f l58 .00466 5666 1727 1.783

3-14-47-1 ; -1350 1350 -01755 -01755 -01755 03449 tl09 .00293 6182 1884 1.801

6-20-47-2 .1312 .1312 -.02625 -.02625 -.02625 .04853 148 .00331 7452 2271 1.856

M 15.3

0-A-6-1 0.1850 0.1850 -0.01295 -0.01295 -0.01295 0.01112 237 0.00986 6016 1834 1.409

3-A-6-1 ^1 f 262 .00965 6780 2067 1.447

3-A-6-2 } -1791 1791 -00894 -00894 -00894 01784 t250 .00964 6482 1976 1.447

6-A-6-1 ^ r299 .01001 7474 2278 1.562

6-A-6-2 > .1600 .1600 -.00922 -.00922 -.00922 .02376 ( 361 .01001 9030 2752 1.562

6-A-6-3 } 1.357 .01002 8899 2712 1.636

aModel designations of references 4 and 5.
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Figure 1,- Series of models for which static aerodynamic characteristics were determined at M 6,8, c 4 In. (10.16 cm). L-66-9046.I



Figure 2-- Model and strain-gage balance assembly.. L-66-9045.1 H^^H



(a) Model position. L-66-5193.1 I^H^H
Figure 3.- Model with 6-in. (15.24-cm) chord mounted in the Mach 15 hypersonic aeroelasticity tunnel. ^^H
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(b) Model support structure (protector retracted), L-66-5192

i^, Figure 3,- Continued,
oo
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(c) Model protector extended, L-66-5191.1

Figure 3,- Concluded,



2r- -i 024Exp. dato Faired curve
o CL
D CD

.10 a/0 -.020

//
.08 D / / -.016

//
.06 / / -.01 2

D/ /
GL ^

/ / CD
^/ /

.04 Cko^ ^,-D-’^ r^ -.008

0/
.02 /< -.004

o y o

no r -------I--------l
-2 0 2 4 6 8 10

am deg

(a) Lift and drag.

Figure 4.- Characteristics of a sharp double-wedge airfoil at M 6.8.
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Figure 4.- Concluded.
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(a) Lift and drag.

Figure 5.- Characteristics of 3-percent blunt double-wedge airfoil at M 6.8.
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Figure 5.- Concluded.
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(a) Lift and drag.

Figure 6.- Characteristics of 6-percent blunt double-wedge airfoil at M 6.8.
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Figure 6.- Concluded.
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(a) Lift and drag.

Figure 7.- Characteristics of sharp double-wedge airfoil at M 15.3.
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(b) Pitching moment.

Figure 7.- Concluded.
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(a) Lift and drag.

Figure 8.- Characteristics of a 3-percent blunt double-wedge airfoil at M 15.3.
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Figure 8.- Concluded.
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Figure 9.- Characteristics of a 6-percent blunt double-wedge airfoil at M 15.3.
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(a) M 6.8.

Figure 10.- Effect of leading-edge bluntness on the lift characteristics of a 5 double-wedge airfoil.
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(b) M 15.3.

Figure 10.- Concluded.
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Figure 11.- Effect of leading-edge bluntness on the drag characteristics of a 5 double-wedge airfoil at am 0.
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(a) M 6.8.

Figure 12.- Lift-curve slopes for the series of double-wedge airfoils (from faired experimental curves).
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Figure 12.- Concluded.
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Figure 13.- Aerodynamic-center locations for the series of double-wedge airfoils (from faired experimental curves).
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Figure 14.- Effect of leading-edge bluntness on the slope of the hft curve
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Figure 15.- Effect of leading-edge bluntness on the location of the aerodynamic center for a 5 double-wedge airfoil at a^ 2.
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Figure 17.- Velocity-index parameter as function of leading-edge radius for a 5 double-wedge airfoil at a^ 0.
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Figure 17.- Concluded.
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Figure 18.- Comparison of the experimental and quasi-steady flutter frequencies, am 0.
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Figure 19.- Effect of M4 on the quasi-steady flutter velocity at M 15.3. a^ 0.
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Figure 20.- Quasi-steady results compared with Newtonian and piston theory results at M 15.3.
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Figure 21.- Effect of mean angle of attack on the quasi-steady flutter speed for sharp and blunt 5 double-wedge airfoils at M 15.3.
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